$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
 AS/Advanced

SUMMER 2011

CHEMISTRY - CH2

SECTION A

Q. 1 (a) Calcium carbonate [1]
(b) Sodium carbonate [1]
Q. 2 Metallic (1)
Covalent and van der Waals (1)[2]
Q. $3 \quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ [1]
Q. 4 D [1]
Q. 5 Materials that change their properties in response to a change in conditions / environment / surroundings [1]
Q. 6 (a) Alkene / double bond (1)Alcohol / hydroxyl / hydroxy (1)[2]
(b) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ [1]

SECTION B

Q. 7 (a) Compound that contains no double bonds / single bonds only (Accept contains maximum number of hydrogens)
(b) (i) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ products (1) balancing (1)
(ii)

(c) Cracking (1)

Heat fraction strongly / heat over a catalyst (1)
Accept equation or description of cracking
(d) Planar molecule with trigonal arrangement about each atom / bond angles roughly 120° (1)

Four (single) covalent $\mathrm{C}-\mathrm{H}$ bonds and one $\mathrm{C}=\mathrm{C}$ double bond (1)
π bond in $\mathrm{C}=\mathrm{C}$ formed by sideways overlap of p orbital (1)
QWC: Information is organised clearly and coherently, using specialist vocabulary where appropriate.
(e) Electrophilic addition (1)

(f) Phosphoric acid
(g) Moles ethanol $=\underline{230}=5$ (1)

Moles glucose $=2.5$ (1)
Mass glucose $=2.5 \times 180=450 \mathrm{~g}$ (1)
Q. 8 (a) $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl}_{2} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{HCl}$ (1)

UV light (1)
any of following for 4 max
$\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{\bullet}$
Free radical substitution / photochlorination (1)
$\mathrm{Cl}^{\bullet}+\mathrm{C}_{4} \mathrm{H}_{10} \longrightarrow{ }^{\bullet} \mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{HCl}$

e.g. $\mathrm{Cl}^{\bullet}+\mathrm{Cl}^{\bullet} \longrightarrow \mathrm{Cl}_{2}$ (1)

QWC: Selection of form and style of writing appropriate to purpose and to complexity of subject matter.
(b) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{NaOH} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{NaCl}$ (1)

Nucleophilic substitution / hydrolysis
(c) Heat with NaOH

Add HNO_{3} then AgNO_{3} (1)
White precipitate seen (1)
(d) Ozone layer depleted / (leads to) increased incidence of skin cancer

Contributes to greenhouse effect / increases global warming
Q. 9 (a) $\mathrm{C}=\mathrm{O}$ absorption at $1650-1750 \mathrm{~cm}^{-1}$

C-O absorption at $1000-1300 \mathrm{~cm}^{-1}$
$\mathrm{O}-\mathrm{H}$ absorption at $2500-3500 \mathrm{~cm}^{-1}$
3 correct peaks labelled
(2 correct peaks labelled 1 mark)
(b) Molecular ion at $\mathrm{m} / \mathrm{z} 60$ shows that M_{r} is 60 (1)

Peak at $\mathrm{m} / \mathrm{z} 15$ shows CH_{3} group / peak at $\mathrm{m} / \mathrm{z} 45$ shows COOH group (1)
(c) (i)

(Accept 1 hydrogen bond)
(ii) (Intermolecular bond formed) when hydrogen attached to a highly electronegative atom (oxygen) (1)
is bonded to an electronegative atom in another molecule (1)
forming very strong dipole - dipole attraction (1)
QWC: Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning
(d) (i) Acidified and heat / reflux
(ii) Colour change from orange to green
(e) Propane would be lower as it cannot form hydrogen bonds / only forms van der Waals forces between molecules (1)

Butan-1-ol would be higher as it (also has hydrogen bonds but) has more van der Waals forces between molecules (1)
Q. 10 (a) (i) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(ii)

Element	Initial Oxidation State	Final Oxidation State
Nitrogen	-3	2
Hydrogen	1	1
Oxygen	0	-2

All three rows correct (2) (1 mark if two rows correct)

Nitrogen oxidised as its oxidation state has increased (1)
(iii) NH_{3} has 3 bonding and 1 non bonding pair of electrons (1)
BF_{3} has 3 bonding pairs only (1)
Electron pairs position themselves as far apart as possible (to minimise repulsion) (1)
(b) (i) A covalent bond where one of the atoms has donated both electrons in the shared pair

charge spread over ion (1)
correct bonding (1)
(iii) Tetrahedral (1)

109½0 (1) (accept 109ㅇ)
(iv) Water is polar / a polar solvent (1)

Anion is attracted to $\mathrm{H}^{\delta+} /$ cation is attracted to $\mathrm{O}^{\delta-}$ (1)
Q. 11 (a) (i) Lilac flame (1)

White solid / white fumes / potassium melts (1)
(ii) $4 \mathrm{~K}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{O}$
(iii) More reactive (1)

Electrons in rubidium lost more easily / ionisation energy is less / explanation e.g. increased sheilding (1)
(Need reason to get first mark but accept more reactive as reactivity increases down group for 1 mark)
(b) (i) No. moles $=\frac{0.098}{23}=0.00426$
(ii) Moles $\mathrm{H}_{2}=0.00213$ (1)

Volume $\mathrm{H}_{2}=0.00213 \times 24=0.0511 \mathrm{dm}^{3}$ (1)
(iii) Moles $\mathrm{NaOH}=0.00426$ (1)

Concentration $\mathrm{NaOH}=\frac{0.00426}{0.200}=0.0213 \mathrm{~mol} \mathrm{dm}^{-3}(1)$
[2]
(c) (i) Do the experiment in a fume cupboard
(ii) $1 \quad 6: 6$

II Electrostatic forces between the oppositely charged ions (1) ionic bonds are / ionic lattice is very strong so large amount of energy needed (1)

