

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2011

PMT

PMT

CHEMISTRY - CH2

SECTION A

Q.1	(a)	Calcium carbonate	[1]		
	(b)	Sodium carbonate	[1]		
Q.2		etallic (1) ovalent and van der Waals (1)			
Q.3	Ca ₃ (PO ₄) ₂				
Q.4	D		[1]		
Q.5	Materials that change their properties in response to a change in conditions / environment / surroundings				
Q.6	(a)	Alkene / double bond (1) Alcohol / hydroxyl / hydroxy (1)	[2]		
	(b)	$C_5H_{10}O$	[1]		
		То	tal [10]		

PMT

SECTION B

Q.7	(a)	Compound that contains no double bonds / single bonds only (Accept contains maximum number of hydrogens)	[1]
	(b)	(i) $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$ products (1) balancing (1)	[2]
		(ii)	[4]
			[1]
	(c)	Cracking (1) Heat fraction strongly / heat over a catalyst (1) Accept equation or description of cracking	[2]
	(d)	Planar molecule with trigonal arrangement about each atom / bond angles roughly 120° (1)	5
	Four (single) covalent $C - H$ bonds and one $C = C$ double bond (1)		
		π bond in C = C formed by sideways overlap of p orbital (1)	[3]
	QWC: Information is organised clearly and coherently, using sp vocabulary where appropriate.		
	(e)	Electrophilic addition (1)	
		H H H H H Br—C—C—Br accept Br—C—C—OH H H H H H	
			[2]
	(f)	Phosphoric acid	[1]
	(g)	Moles ethanol = $\frac{230}{46}$ = 5 (1)	
		Moles glucose = 2.5 (1)	
	Mass glucose = 2.5 x 180 = 450 g (1)		
		Total	[16]

Q.8 $C_4H_{10} + CI_2 \longrightarrow C_4H_9CI + HCI (1)$ (a) UV light (1) any of following for 4 max $Cl_2 \longrightarrow 2Cl^{\bullet}$ (1) Free radical substitution / photochlorination (1) $CI^{\bullet} + C_4H_{10} \longrightarrow C_4H_9 + HCI (1)$ $^{\bullet}C_4H_9 + Cl_2 \longrightarrow C_4H_9Cl + Cl^{\bullet}(1)$ e.g. $Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_2$ (1) [6] QWC: Selection of form and style of writing appropriate to purpose and to complexity of subject matter. [1] (b) $C_4H_9CI + NaOH \longrightarrow C_4H_9OH + NaCI (1)$ Nucleophilic substitution / hydrolysis [2] (C) Heat with NaOH (1) Add HNO_3 then $AgNO_3$ (1) White precipitate seen (1) [3] Ozone layer depleted / (leads to) increased incidence of skin cancer (d) Contributes to greenhouse effect / increases global warming [1]

Total [13]

PMT

PMT

[2]

[1]

- **Q.9** (a) C=O absorption at $1650-1750 \text{ cm}^{-1}$
 - C-O absorption at 1000-1300 cm⁻¹
 - O-H absorption at 2500-3500 cm⁻¹

3 correct peaks labelled

(2 correct peaks labelled 1 mark)

(b) Molecular ion at m/z 60 shows that M_r is 60 (1)

Peak at m/z 15 shows CH_3 group / peak at m/z 45 shows COOH group (1) [2]

(c) (i) $H_{3}C-C$ $C-CH_{3}$

(Accept 1 hydrogen bond)

(ii) (Intermolecular bond formed) when hydrogen attached to a highly electronegative atom (oxygen) (1)

is bonded to an electronegative atom in another molecule (1)

forming very strong dipole – dipole attraction (1)	[3]
QWC: Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning	[1]

- (d) (i) Acidified and heat / reflux [1]
 - (ii) Colour change from orange to green [1]
- (e) Propane would be lower as it cannot form hydrogen bonds / only forms van der Waals forces between molecules (1)

Butan-1-ol would be higher as it (also has hydrogen bonds but) has more van der Waals forces between molecules (1) [2]

Total [13]

[1]

[3]

Q.10 (a)

+
$$5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$$

(ii)

(i)

 $4NH_3(g)$

Element	Initial Oxidation State	Final Oxidation State
Nitrogen	-3	2
Hydrogen	1	1
Oxygen	0	-2

All three rows correct (2) (1 mark if two rows correct)

Nitrogen oxidised as its oxidation state has increased (1) [3]

(iii) NH₃ has 3 bonding and 1 non bonding pair of electrons (1)

 BF_3 has 3 bonding pairs only (1)

Electron pairs position themselves as far apart as possible (to minimise repulsion) (1)

A covalent bond where one of the atoms has donated both electrons (b) (i) in the shared pair [1]

(iii)	Tetrahedral (1)		
	109½º (1) (accept 109°)	[2]	
(iv)	Water is polar / a polar solvent (1)		

Anion is attracted to $H^{\delta_{^+}}$ / cation is attracted to $O^{\delta_{^-}}$ (1) [2]

Total [14]

Q.11	(a)	(i)	Lilac flame (1)	
			White solid / white fumes / potassium melts (1)	[2]
		(ii)	4K + O ₂ 2K ₂ O	[1]
		(iii)	More reactive (1)	
			Electrons in rubidium lost more easily / ionisation energy is less / explanation e.g. increased sheilding (1)	[2]
			(Need reason to get first mark but accept more reactive as reactivity increases down group for 1 mark)	
	(b)	(i)	No. moles = $\frac{0.098}{23}$ = 0.00426	[1]
		(ii)	Moles $H_2 = 0.00213$ (1)	
			Volume $H_2 = 0.00213 \times 24 = 0.0511 \text{ dm}^3$ (1)	[2]
		(iii)	Moles $NaOH = 0.00426$ (1)	
			Concentration NaOH = $\frac{0.00426}{0.200}$ = 0.0213 mol dm ⁻³ (1) [[2]
	(c)	(i)	Do the experiment in a fume cupboard	[1]
		(ii)	I 6:6 [[1]
			II Electrostatic forces between the oppositely charged ions (1)	
			ionic bonds are / ionic lattice is very strong so large amount c energy needed (1)	of [2]

Total [14]

PMT

Section B Total [70]